Solution path clustering with adaptive concave penalty
نویسندگان
چکیده
منابع مشابه
Adaptive multi-penalty regularization based on a generalized Lasso path
For many algorithms, parameter tuning remains a challenging and critical task, which becomes tedious and infeasible in a multi-parameter setting. Multi-penalty regularization, successfully used for solving undetermined sparse regression of problems of unmixing type where signal and noise are additively mixed, is one of such examples. In this paper, we propose a novel algorithmic framework for a...
متن کاملStrong NP-Hardness for Sparse Optimization with Concave Penalty Functions
We show that finding a global optimal solution for the regularized Lq-minimization problem (q ≥ 1) is strongly NP-hard if the penalty function is concave but not linear in a neighborhood of zero and satisfies a very mild technical condition. This implies that it is impossible to have a fully polynomial-time approximation scheme (FPTAS) for such problems unless P = NP. This result clarifies the ...
متن کاملClustering with mixtures of log-concave distributions
The EM algorithm is a popular tool for clustering observations via a parametric mixture model. Two disadvantages of this approach are that its success depends on the appropriateness of the assumed parametric model, and that each model requires a different implementation of the EM algorithm based on model-specific theoretical derivations. We show how this algorithm can be extended to work with t...
متن کاملClustering via Concave Minimization
w. N. Street Computer Science Department Oklahoma State University 205 Mathematical Sciences Stillwater, OK 74078 email: nstreet@es. okstate. edu The problem of assigning m points in the n-dimensional real space Rn to k clusters is formulated as that of determining k centers in Rn such that the sum of distances of each point to the nearest center is minimized. If a polyhedral distance is used, ...
متن کاملNew concave penalty functions for improving the Feasibility Pump
Abstract Mixed-Integer optimization represents a powerful tool for modeling many optimization problems arising from real-world applications. The Feasibility pump is a heuristic for finding feasible solutions to mixed integer linear problems. In this work, we propose a new feasibility pump approach using concave nondifferentiable penalty functions for measuring solution integrality. We present c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2014
ISSN: 1935-7524
DOI: 10.1214/14-ejs934